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In this paper we generalize the von K6rmtin solution for flow above a single rotating 
disk, to include non-axisymmetric solutions. These solutions contain an arbitrary 
parameter ; for zero value of the parameter the asymmetric flow degenerates into the 
classical von Ktirmtin solution. Thus the classical solution is never isolated when 
considered within the scope of the full Navier-Stokes equations; there are asymmetric 
solutions in every neighbourhood of the von KBrm6n solution. Calculations are 
reported here for s = 0,0.02 and 0.06, where s represents the ratio of angular velocity 
of the fluid at infinity to the angular velocity of the disk. A subset of the solutions 
obtained here corresponds to flow induced by the rotation of a disk when the latter 
is placed in a fluid that is moving with a constant uniform velocity. 

1. Introduction 
The problem of disk flows has occupied a central position in fluid mechanics ever 

since the pioneering work of von Ktirmtin (1921). The reason for this, one suspects, 
is that the geometry of the flow is one of the simplest possible. Correspondingly, one 
might presume the right to have an uncomplicated flow, even though the flow is 
described by equations in which the nonlinear terms have been retained. This 
expectation almost seemed to be fulfilled when von Karman first showed that two 
simple propositions, viz that the flow is axisymmetric and that the axial velocity is 
independent of the radial coordinate, reduce the equations of motion to a set of 
ordinary differential equations. 

The similarity transformation that results from the von KBrman postulates 
remains applicable even when the fluid at infinity is rotating about the axis of the 
disk. Solutions have been obtained for various values of s by Rogers t Lance (1960) 
and others. However, it  appeared to be impossible to find solutions in the range 
-0.160 > s > - 1.4351. It is now clear that at s = - 1.4351 the solution of the 
equations becomes singular. At s = -0.160 the situation was more mysterious. 
Weidman t Redekopp (1975) suggested that a singularity exists in this neighbour- 
hood. The speculation ended with the work of Zandbergen & Dijkstra (1977) and 
Dijkstra (1980), who showed that branching occurs at s = -0.16054. They discussed 
the two branches that coincide here, and conjectured that there are an infinite number 
of solutions to the problem in a small region near s = 0. Lentini t Keller (1980a, b) 
found that at least four families of solutions exist and indicated the possibility of the 
existence of an infinite sequence of solutions. The main difference between the 
solutions is an extra cell, which is built up as the solution proceeds from one branch 
into another. Near the disk and near infinity the solutions are almost indistinguishable, 
particularly when higher branches are compared. Flows with s = 0, having zero 
angular velocity at infinity, exist in each family. 

Theoretical investigations have been carried out by Hastings (1970), McLeod (1971) 
and Lan (1971), among others. The asymptotic behaviour of the solution at infinity, 
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which is of fundamental importance in obtaining solutions, was first investigated by 
Rogers & Lance (1960) and later by McLeod (1969), who showed rigorously that the 
decay is exponential; it is monotonic for s = 0, while s 8 0 leads to oscillatory 
behaviour as z+m. Lentini & Keller (1980a, b )  made use of McLeod’s work and 
investigated the condition that ensures bounded solutions. The condition is simply 
that the solution of the associated linear problem vanish when projected into the 
union of certain subspaces, the only subspace where it could grow out of bounds. 
This analysis leads to asymptotic conditions which are evaluated at some finite 
position 2,. 

Recently Berker ( 1979) considered the flow between corotating disks and established 
a one-parameter family of solutions. The only axisymmetric solution in this family 
is the rigid-body motion, thus it is just this solution that would follow from the von 
KBrman assumption. Further developing Berker’s ideas, Parter & Rajagopal (1984) 
proved the existence of a one-parameter family of solutions for flow between two 
disks. The only axisymmetric solutions are the von KSrman solutions. These solutions 
were calculated by Lai, Rajagopal & Szeri (1984). 

In  the light of the foregoing, one is advised to reexamine the classical problem of 
flow over a single rotating disk, within the context of establishing asymmetric 
solutions. For the form of the velocity field sought it is found that the set of governing 
equations contain, in addition to the nonlinear equations of axisymmetric flow, two 
coupled linear equations. The coefficients of the linear equations depend on the 
solution of the axisymmetric problem. The axisymmetric flow that is investigated 
here is the result of superposition, in each z = constant plane, of the von KBrmtin 
swirling flow and a velocity of translation, the latter containing an arbitrary 
parameter C. For a given value of this parameter, the velocity of translation is 
different in each plane. The asymmetric solution is continuous in C; thus symmetric 
solutions of the von Karman problem are never isolated when considered within the 
scope of the full Navier-Stokes equations. 

In this paper we present asymmetric solutions over a single rotating disk at three 
values, s = 0, 0.02 and 0.06, of the velocity ratio. At  the first of these 8-values, i.e. 
for non-rotating flow a t  infinity, we have 

. 141 
z + m  I Vl 
lim - = 00 (s = O ) ,  

where V(xl, x3) = { U ,  V ,  W) represents the von KBrman solution and q ( z )  = {qr, qs, 0} 
is the rigid-body translation; the distance between the locus of stagnation points? 
and the axis of rotation grows out of bound as z - t c o .  For s =+ 0, however, V(z) 8 0 
as z+ 03, and returns into the axis of rotation as z + co . 

2. Analysis 
The flow field is located above, and is limited by a single disk of infinite radius. 

The disk occupies the x3 = 0 position in a cylindrical polar coordinate system 
{xl, x2, x3}. We further define a non-dimensional coordinate system { r ,  8,  z}  through 

t Stagnation point is defined here through qr+ U = qs+ V = 0. 



Asymmetric flow above a rotating disk 473 

The disk is rotating with angular velocity w ,  the kinematic viscosity of the fluid is 
v and the angular velocity of the fluid as z+ 00 is 5 0 .  

Von Ktirmhn (1921) searched for axisymmetric solutions to the flow induced by 
the rotation of the disk. The assumption that the axial velocity component is uniform 
over z = constant planes and that the flow is independent of the azimuthal coordinate 
yields the following velocity field for the von K b m h  swirling-flow problem : 

u = x'wF(x3), 

w = (vw)iH(xS) 

V = x'wG(x3), , 

Here V(d, x3)  = {U, V ,  W) is the velocity of the axisymmetric flow, which is 

div V = 0. (3) 

further required to satisfy the constraint of incompressibility 

Equation (3) leads to the condition 

1dH 
2 dz 

P(z) = -- -, (4) 

and this, together with (2), yields von Ktirrnh's equations upon substitution into 
the Naviedtokes equations : 

daG dG CW 
dz2 dz dz 
-- H-+G- = 0. 

The boundary conditions that accompany (5a, b) are as follows: 

dH 
dz 

H=--0, G = l  a t z = O ,  

G + s  a t z + m .  
cw 
-+O,  
dz 

To make the problem determinate (Rogers & Lance 1960) it was also necessary to 
assume that 

d2H d3H 
- -+0 asz+co. 
dz2 ' dz3 (7) 

This condition is, in fact, responsible for the appearance of s, the ratio of rotational 
speeds, in (5a) .  

The von Karman problem, represented by (5)-(7)' has been solved by several 
investigators. We mention here only two recent solutions. Zandbergen & Dijkstra 
(1977) employed two methods. Their first method was a finite-difference discretization 
of the boundary-value problem equation (5)' (6) and (7) on a uniform mesh, followed 
by Newton's method to solve the resulting set of nonlinear algebraic equations. Their 
second method was a shooting technique ; in this the equations were integrated inward 
from some finite value of z, say z,, at which position the values for H, H', H", G and 
G were obtained from the second-order asymptotic approximations of Rogers & 
Lance (1960). The asymptotic approximation was calculated from a small perturbation 
of the solid-body rotation. Lentini t Keller (1980)' on the other hand, treated (5 )  
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as a two-point boundary value problem with boundary conditions (6a)  prescribed at 
z = 0 and the following asymptotic conditions specified at some z, : 

where 

(9b) 
1 

b(H,, S) = -[(H4,+4~~)f-H&]:, 
d 2  

and Ha = H(z,) is the (unknown) axial flow at z,. 
Equations (8a, b) are the solvability conditions of the linear problem corresponding 

to (5 ) ,  and ensure bounded solutions of the nonlinear problem on the semi-infinite 
interval 0 < z (Lentini & Keller 1978). The basic numerical scheme in the work of 
Lentini & Keller was to use finite differences on a non-uniform mesh, coupled with 
Newton's method. 

In this paper we generalize the von Karman solution to a set of asymmetric 
solutions, obtained when superposing a rigid-body motion of uniform velocity for each 
z = constant plane, on the spiral flow of the von KBrman solution. The resulting 
velocity field, when suitably non-dimensionalized, takes the form 

1 
r 

1 
r 

U ( r ,  8, Z) = P(z )+-[g ( z )  cosO-f(z) sine], ( 10 a)  

(lob) 

@(z) = H(z) .  (10c) 

@(r, 8, Z) = G(z)--[g(z) sinO+f(z) C O S ~ ] ,  

Here 
1 

{ti, 3, @} = -{u, v, rw}, 
X1W 

and 

is the velocity of the asymmetric flow, u = V(xl, x3)+q(x2, x3). 
The velocity field (1Oa-c) satisfies the incompressibility constraint (3) if condition 

(4) is accepted, and when substituted into the full Navier-Stokes equation it yields 
the following set of ordinary differential equations : 

u(x1, 2 2 ,  x3) = {u, w, w} 

d2G dG dH 
dz2 dz dz 

d3f d2f 1 dHdf d2H d 
--H 
dz3 dz2 2 dz dz dz2 dz 

d3g d2g 1 dHdg d2H d 
--H +l ---(Of) = 0 
dz3 dz2 2 dz dz 2 g  dz2 dz 

-- H-+G- = 0, 

+If- +- (Gg) = 0, 

Equations of (12a, b) are identical with the von Karman equations (5) ,  while 12(c, d)  
give conditions on f(z) and g(z)  such that q(8, z )  be consistent with the Naviedtokes 
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equations. Note that {(vw)tg(z),- (vw); f(z)} are the Cartesian components of the 
velocity field that is superposed on the von Karm6n swirling flow. 

To ensure that (12a, b) yield the von KBrm6n solution, we set 

H = W = O ,  G = l  a t z = O ,  

H ' + O ,  G-ts asz-tm. 

It now remains to specify boundary conditions for cf(z), g(z)}. At the disk we must 
require no slip, i.e. 

f = g = O  a t z = O ,  

but the remaining boundary conditions may be chosen in several different ways. 
(i) If we choose 

f+C, g+O asz+m, (14a) 

we establish conditions for flow induced by a rotating disk as it is placed in a fluid 
that is moving with the uniform velocity (0, - (vo) tC,  0). To avoid a shear layer at 
infinity, we also set 

f ' - t O ,  g'j-0 asz+oo. (14b) 

(ii) One might also specify that 

f+O,  q + O  asz+m, (15a) 

and that f = C ,  g = O  a t z = I ,  (15b) 

where z = I is some intermediate position. Although this family of solutions does not 
lend itself to immediate physical interpretation, it does represent hitherto unknown 
solutions to the Naviedtokes equations, and as such deserves investigation. 

Asymmetric flow between two parallel disks has been discussed in detail by Lai 
et al. (1984). The numerical study was based on the existence proofs of Parter & 
Rajagopal (1984). The extension of these proofs to flow above a single rotating disk 
is trivial (Parter & Rajagopal 1984), and we can thus ascertain that, whenever there 
is a solution to the von K6rmAn problem (5 )  and (7), there is also a solytion to the 
system (12)-( 14) for each C. Thus symmetric solutions of the problem of flow above a 
rotating disk are never isolated: there is an aaymmetric solution arbitrarily close by. 

Before the start of numerical work, we normalize the independent variable, z 2 0, 
to 2 = z/z,, 0 < Z < 1. Here z, is some finite number; its precise value will be defined 
later. Correspondingly, (12a-d) are transformed to 

H"'-z, H H " + + T ~ H ' ~ - ~ z ~ , ( P - s ~ )  = 0, (16a) 

G"-z,(GH-H'G) = 0, ( l a b )  
f'"-zw H f " - : z , H ' f ' + ~ ~ ~ H " f + z Z , ( a g ) '  = 0, (16c) 
f - 2 ,  Hg"-+zw H'g'++Zw H"g-&(Gf)' = 0. (164  

Here the prime signifies differentiation with respect to the normalized variable Z. The 
boundary conditions (13a-c) now take the form 

and either 

16 
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for the first family of solutions, or 
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f(1) = 0, g(1) = 0, 

f ( Z )  = c, g(i) = 0. 

for the second family. In what follows we detail the analysis for the second family 
of solutions, (19a, b), only. 

We have solved (16) in various ways and with varying accuracy. The method we 
describe in detail treats (16) as a boundary-value problem, but replaces conditions 
(19a) by the asymptotic conditions of Lentini & Keller (8); these asymptotic 
conditions are to be applied at a finite z,. The normalized form of these conditions 
is 

1 

z, s 2, 
')a(H,, 8)fl(l)+[H,+a(H,, 9 )3 (Gm-s )+-G(1)  = 0, (20b)  

W H ,  7 

where H ,  = H(1) and G, = G(1). 
The asymptotic conditions on H ( z )  and G(z) of Lentini & Keller are nonlinear and 

enable computations to be made on shorter finite intervals than would otherwise be 
possible. This is particularly important when solving for higher branches of (16). 

3. Numerical method 
The development here parallels the corresponding development in Lai et al. (1984). 

We seek solutions of the system (12)-(16) in the weak form: 
N 

1-1 
{ H ( z ) ,  G ( 4 ,  f(4, g(4) = z { H t ,  G,, f i ,  96) W). (21) 

Here the B&), 1 < i < N ,  

with uniform smoothness 
knot sequence 

are cubic B-splines defined over the partition 

n: 0 = z1 < z2 < ... < zz+l = 1, (22) 

yr = y = 3 , 2  < i < 1,  on the interior breakpoints, and a 

I z1 = t, = t, = t, = t4, 

z2 = t,, 

22 = tN 

The B-splines have the following relevant properties (de Boor 1978) : 
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The approximation (21) can be made to satisfy the boundary conditions. It follows 
from (17) and (19)  that 

Hl = H2 = 0, G, = 1,  (25a)  

H N - 1 =  H N ,  G N  = 5 ,  (25b)  

The discretized forms of the Lentini & Keller asymptotic conditions (20a, b) are 

1 1 

z, ~, - [ H N + a ( H N ,  s)l ( H N - H N - l )  B~(’~+l)+,[HN-2B;;(ZZ-l) 

Substituting the expansions (20a, b) into (16a-d) and multiplying through by the 
test sets 

(29) I T* = {B,(z): 3 < m < N-i}, 

TG = {B,(E) : 2 < ?z < N -  I}, 

7f = {B&) : 2 < k < N -  2} ,  

T8 = {B,(’) : 2 < I? < N - 2 } ,  

and integrating with respect to f ,  from Z = 0 to Z = 1, we obtain four sets of algebraic 
equations. Two of these sets are nonlinear and represent the von KBrmBn swirling 
flow. The other two are linear and contain fr and gt. The sets of equations can be 
written as follows : 

N N 
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3 < m < N - 1 ,  2 < n < N - 1 ,  2 < k < N - 2 ,  2 < l < N - 2 .  

Implicit in (30a-d) are the conditions (25a, b). 
The Galerkin coefficients i$C, . . . , are defined as follows : 

I Z@ = Jl BJb) (2) Bg) (2) d2, 

qi = 6 Bia)(2) B$*)(Z) Bf)(Z) d2, 

a < b < c ,  

a=a+b+c+l  ( i fb+0)+2  (ifa+O). 

The nonlinear algebraic system consisting of (25)-(27) and (30) was solved via a 
Newton-like method on the PDP-10 computer of the University of Pittsburgh. The 
splines and their derivatives were evaluated from recurrence relations, employing the 
subroutine package of de Boor (1978). 

During the calculations the first solution is always obtained on a uniform 
breakpoint sequence. This solution is then improved by employing an adaptive mesh 
selection strategy of de Boor (Russell & Christiansen 1978). Let the solution H(Z) 
obtained on a uniform breakpoint distribution be represented by the cubic spline 
interpolation 

To evaluate the c k ,  we use a subroutine (de Boor 1978) which requires the B-spline 
coefficients of the curve H(2) as input, and on output supplies the interpolation 
coefficients. The calculation of the derivative of, say, H(2)  is based on the Ck, f l ,  and 
we choose 

Here 

The new breakpoint sequence is defined then with the piecewise-linear function K ,  

wh&e 

~ ( 5 )  = J [h(s)3'lk ds; ~ ( 1 )  = J ~ [h(8)]1'kd8. 
0 0 

The iteration for n = 1 ,  2, 3, . . . is described by 

(35) 

where l ( f l )  is the new number of subintervals. 
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Number of 
iterations - f H ( z , )  l e l  R, R2 

Uniform mesh 0.442 185 - 0.801 21 x 0.45740 x loW2 

2 0.442227 0.275009 x 0.50794 x lo-' 0.28753 x 
3 0.442230 0.185264 x 0.501 58 x 0.29704 x 
4 0.442232 0.186838 x 0.491 36 x lo-' 0.29105 x 

1 0.442 230 - 0.39920 x 10-3 0.231+31 x 10-3 

- - - Shooting (present) 0.442 235 
Zandbergen & Dijkstra 0.442237 
Lentini & Keller 0.442 237 

- - - 
- - - 

TABLE 1 .  Effect of breakpoint grading on solution; branch I, zm = 15, N = 63 

-W(zm 1 
Number of 
iterations z, = 15 Z, = 20 Z, =25 

1 0.442 230 0.442 235 0.442 237 
2 0.442 227 0.442 234 0.442 231 
3 0.442230 0.442235 0.442236 
4 0.442 232 0.442 234 0.442 234 

Shooting (present) 0.442235 0.442 237 0.442237 

TABLE 2. Effect of value of z, on solution; branch I, N = 63 

Uniform mesh 0.442 185 0.442 18 - 

iterations N = 43 

Uniform mesh 0.442 101 
1 0.442222 
2 0.442226 
3 0.442226 
4 0.442226 

N = 63 

0.442 185 
0.442230 
0.442 227 
0.442230 
0.442232 

-'W(Zm 1 
Number of 

N = 73 N = 95 
0.442202 - 
0.442232 0.442236 
0.442229 0.442235 
0.442231 0.442 235 
0.442231 0.442 228 

TABLE 3. Effect of t--e value of N on so1ut.m; branch I, z, = 15 

Quite simply, the idea behind (32)-(36) is to place the breakpoints densely in 
subintervals where rapid change of the solution is anticipated. How far the iteration 
should proceed can be judged, for example, by observing the L, norm of the residue 
of the nonlinear system. 

4. Results and discussion 
The first task we set ourselves is demonstration of the accuracy of solution. We 

shall concentrate on the effect of three parameters: (i) the positioning of the far 
boundary z, ; (ii) the number N of splines in the expansions; and (iii) the breakpoint 
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0 
0.005 
0.010 
0.015 
0.020 
0.025 
0.030 
0.035 
0.040 
0.045 
0.050 
0.055 
0.060 - 

Present 
solution 

0.223861 
0.220 80 1 
0.215594 
0.208 026 
0.197 853 
0.184783 
0.168 468 
0.148479 
0.124288 
0.905 23 1 
0.060464 
0.018718 
.0.030 141 

Zandbergen & 
Dij kstra 

0.223861 7 
- 

- 
0.197 845 
- 

- 
0.12431 3 
- 

- 
-0.030059 

TABLE 4. Branch I1 of the basic flow; N = 63, z, = 60 

1 .o 

0.5 

F, G 0 

-0.5 

-1.0 

. O  H 

.-1 
0 0.5 

Z 

1 .o 

FIGURE 1. Branch I of the von K&rmBn swirling flow ; s = 0. 

sequence. The discussion on the influence these parameters have will be presented 
in reverse order. 

The initial solution to the boundary-value problem (16) and (17) is obtained with 
uniform breakpoints. We then employ (33)-( 36) to generate non-uniform breakpoint 
sequences. The goodness of solution is monitored by observing the value of the 
residues R, and R, and 8,  the L, norm of the residue of the nonlinear system. The 
residues R, and R, have the following definitions (Zandbergen & Dijkstra 1977): 
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23 
0 

L g  
- 2  

-4 

0 0.5 1 .o 

FIQURE 2. Branch I solution. 
Z 

U 

4 

2 

0 

0, l/r = 0 
f, 0.1 
0,  1.0 

-2 -1 
0 0.5 1 .o 

z 
FIGURE 3. Dimensionless radial velocity fi = u/xlw for branch I 

solution, uniform streaming at infinity; 8 = 0, 19 = in. 

48 1 

z 
1 
1.101 922 
1.202 665 
1.304542 
1.397 707 
1.502612 
1.623265 
1.707 914 
1.825 01 3 
1.905 184 
I .o 

-4F 
0 

-0.769229 x 10-l 
-0.281637 x lo-' 
-0.790926 x lo-' 
-0.234408 x lo-' 
-0.586259 x 
-0.118341 x lo-' 
- 0 . 3 8 3 8 ~  x 10-4 
-0.801 285 x 
-0.26683 x 
-0.659625 X lo-' 

G 

1 .o 
0.305583 
0.815955 x 10-l 
0.211459x 10-1 
0.614416 x lo-* 
0.152 769 x lo-' 
0.308258 x 
0.100309 x 10'8 
0.212570 x lo-* 
0.736554 x 
0.210909 x 

- iH 
0 
0.222301 
0.374909 
0.424098 
0.436914 
0.440909 
0.441 967 
0.442 148 
0.442216 
0.442228 
0.442 232 

f 
0 

-2.51610 
-4.10850 
- 4.40952 
-4.037 62 
- 3.338 7 1 
-2.42128 
- 1.757 22 
- 0.830 305 
-0.410383 x lo-' 

1 .o 

V 
0 
1.087 97 
0.832 474 
0.374448 
0.147 866 
0.446 386 x 10-l 
0.118231 x 10-l 
0.462 389 x 10-o 
0.132947 x lo-' 
0.602 567 x 
0 

TABLE 5. Flow induced by rotating disk in uniformly streaming fluid: branch I 
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4 -  , 
0 0, l l r  = 0 

+, 0.1 

2 -  

I 

0 -  

-2  I 
0 0.5 1 .o 

2 

FIGURE 4. Dimensionless azimuthal velocity ~ = v/xlo for branch I 
solution, uniform streaming at infinity; 8 = 0, B = 4%. 

P 6L 
o.e=o 

4 

2 

0 

0 0.5 
i 

1 .o 

FIGURE 5. Dimensionless radial velocity = u/xlw for branch I 
solution, uniform streaming at infinity, 8 = 0, r = 1. 

They are obtained from (16a,  b) by simple algebraic manipulations, followed by 
integration. 

Table 1 shows the effect of successive mesh grading on the values of the 
dimensionless axial flow a t  infinity, H ,  = H(z,). 

The results of Zandbergen & Dijkstra (1977), quoted in this table, were achieved 
in shooting via finite-difference discretization followed by Richardson extrapolation. 
The result of Lentini t Keller (1980a, b) was through finite-difference solution of the 
boundary-value problem. 
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0 0.5 1 .o 
t 

483 

8 

6 
U 

4 

2 

0 

-2 

-4 

-6 

- 8  

FIGURE 6. Dimensionless azimuthal velocity 8 = v/xlw for branch I 
solution, uniform streaming at infinity; s = 0, r = 1. 

FIGURE 7. Branch I locus of stagnation points, uniform streaming at infinity; u = v = 0, s = 0. 

In the calculations leading to table 1 we set the far boundary conditions at z, = 15 
and employ N = 63 splines in the expansion. Keeping N at this value and varying 
z,, we obtain the data of table 2. We monitored the values of the residues R, and 
R, and the residue E ;  these showed convergence during iterations. 

In our final illustration of accuracy of branch I, we keep the far boundary at z, = 15 
and vary the number N of splines in the expansions (21). The results of the calculation 
are shown in table 3. It seems that for single-precision calculation on a 32 bit machine 
best results are achieved with 63 < N < 73, and for N > 73 there is a decrease of 
accuracy with increasing N. To fully utilize expansion in 95 splines we would have 
to revert to double precision on the PDP-10. Assuming that interpolation with 
B-splines produces errors proportional to l / (N-l)4 (Hall 1968), the first row of 
table 3 yields H(z,) = 0.442222 on the limit for uniform breakpoint distribution. The 
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3.0 

- 2.5 

- 2.0 

- 1.5 

- 1.0 H 

- 0.5 

- 0  

~- -0.5 

v- -1.0 

1.2 

0.9 

0.6 

0.3 

0 

-0.3 

-0.6 
0 0.5 1 .o 

I 

FIQURE 8. Branch I1 of the von Karman swirling flow; 8 = 0. 

-2  4 
0 0.5 1 .o 

FIQURE 9. Branch I1 solution, uniform streaming at infinity; s = 0. 
2 

z 

0 
0.105 789 
0.203469 
0.304006 
0.401 941 
0.453594 
0.529329 
0.613466 
0.681 057 
0.791 536 
1 .o 

-4F 

0 
0.139283 

-0.067563 
-0.056246 
-0.059352 X lo-' 
-0.153695 x lo-' 
-0.202789 x 
-0.209221 x 
-0.324374 X lo-' 
-0.088911 x lo-@ 
-0.062088 x 

G -fH f 
1 .o 0 0 

-0.269431 -0.623640 0.351949 
-0.398178 - 1.11058 0.130417 
-0.665126 x lo-' -0.086306 -0.405928 
-0.500496 x lo-' 0.196613 -1.37958 
-0.125002 x lo-' 0.216976 - 1.40772 
-0.163466~ 0.22297 -1.16843 
-0.170823 x lo-' 0.223779 -0.805925 
-0.277608 x 0.223858 -0.500938 
-0.838308 x 0.223873 -0.508031 x lo-' 

0.633599 x 0.223874 1.0 

B 

-0.303695 x lo-' 
0 

0.281 305 
-0.146166~ lo-' 
-0.831361 X lo-' 
-0.424869 X lo-' 
-0.175715 x lo-' 
-0.105211 x lo-' 
-0.791966~ lo-' 
-0.536728 x lo-' 

0 

TABLE 6. Flow induced by rotating disk in uniformly streaming fluid; branch I1 
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FIGURE 10. Branch I1 locus of stagnation points, uniform 
streaming at infinity; u = v = 0, s = 0. 
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FIQURE 11. Dimensionless radial velocity 6 = u/zlw for branch I1 
solution, uniform streaming at infinity; 8 = 0, 8 = arc. 

same data in Richardson extrapolation (Kopall961) leads to H(z,) = 0.442249 from 
two points and to H(z,) = 0.442247 from three points. 

Table 4 compares our results for branch I1 with that of Zandbergen t Dijkstra 
(1977) a t  various values of 8 .  In order to save computer time, the breakpoint 
distribution was optimized only a t  8 = 0 and then kept invariant during continuation 
in s from s = 0 to 0.055. By continuation we refer to the process whereby the solution 
at some 8 provides the starting conditions for Newton’s iteration a t  s + As. To reach 
8 = 0.06 from 8 = 0 we took 12 steps, as shown in table 4. Our goal here was to reach 
B = 0.06; thus at this value of the ratio of rotational speed we again optimized the 
distribution of breakpoints. The value quoted at s = 0.06 in table 4 was obtained on 
an optimally graded mesh. 
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FIGURE 12. Dimensionless azimuthal velocity 3 = w/xlo for branch I1 
solution, uniform streaming at infinity; s = 0, 0 = in. 
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FIGURE 13. Dimensionless radial velocity u = u/xlw for branch 11 
solution, uniform streaming at infinity; s = 0, r = 1. 

f 

In  the first instance we investigate the flow that is induced by a rotating disk when it 
is placed in a fluid streaming uniformly in the y < 0 direction and having a velocity 
(0, - (vw)tC, O}. The boundary conditions satisfied by this flow are: (a) no slip a t  the 
disk, (13a, c); and (b) uniform velocity a t  infinity, (13b) and (14) together with 8 = 0. 
Figures 1 and 2 display the functions {F, clr, H) and cf, g} respectively, for branch I 
of the solution. The corresponding numerical values are listed in table 5. The 
non-dimensional radial velocity U = u / d w  is shown in figure 3 a t  0 = for various 
values of the non-dimensional distance from the axis of disk rotation. Far from the 
axis, r + m ,  the flow appears to be the classical von Kkmhn solution, but this 
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FIQTJRE 15. Branch I locus of stagnation points; u = v = 0, C = 1, i= 0.1, s = 0.02. 

FIUUFCE 16. Branch I1 locus of stagnation points; u = v = 0, C = 1, Z =  0.1, s = 0.02. 

FIGURE 14. Dimensionless azimuthal velocity i! = z)/zlw for branch I1 
solution, uniform streaming at infinity; s = 0, r = 1. 
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180 

0.02. FIQURE 17 

F, G 

-0.6 4 c -1.0 
0 0.5 1 .o 

t 

FIQURE 18. Branch I1 of the von Kirmin swirling flow; 8 = 0.06. 

appearance is misleading and is due to the fact that in the non-dimensional plot the 
contribution of cf (z) ,  g(z)} is lessened as there is division by r ,  (lo), making it appear 
insignificant. As we approach the centre of rotation, however, even this superficial 
similarity of our flow to the von KLrmLn solution vanishes. We may remark here 
that the gradient' of the non-dimensional velocity goes to zero as z+ co , and there 
is no shear layer at infinity. That this is not shown well in figure 3 is simply due to 
plotting 0 < z C co onto the unit interval. Remarks identical to these may also be 
made for figure 4, which shows the non-dimensional azimuthal velocity ij = v/zlw. 
Figures 5 and 6 contain again the non-dimensional velocity components U and 5 
respectively, but this time the distance from the centre of rotation is fixed at  r = 1 .O 
and the profiles are shown as the observer sees them while moving along the unit circle 
from 8 = 0 t o  8 = x .  The velocity component U satisfies the von KLrmh condition 
as z - t  co only a t  8 = 0, while the far boundary condition of the classical solution is 
satisfied by V only at  8 = *in. In all other positions the solutions exhibit less of a 
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FIQURE 19. Branch I1 solution; C = 1 ,  i= 0.1, s = 0.06. 
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FIQURE 20. Branch I1 locus of stagnation points; u = v = 0, C = 1, 1 = 0.01, 8 = 0.06. 

boundary-layer structure than do the classical profiles. At r = 1.0 and 0 = the 
rotation of the fluid is in opposition to disk rotation, except in a narrow layer adjacent 
to the disk. 

Figures 5 and 6 show the velocity-profile development experienced by the observer 
moving along the circle r = 1 .O in the positive direction from 8 = 0. Since now V+O 
as z+ 00, the distance between the centre of rotation and the stagnation point 
increases out of bound aa z+m. This isindicated in figure 7, an isometric plot of 
the locus of stagnation points r. The coordinates of the stagnation points, which are 
defmed here through u = v = 0, are given by: 
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PIQURE 21. Dimensionless radial velocity ii = u/xlw for 
branch 11; C = 1, i= 0.1, 8 = 0.06, r = 1. 

Figure 7 also contains the projection of the Iocus of stagnation points r onto the 
coordinate planes of the Cartesian system {z, y, z}. The locus has one point in the 
(0, 0, 0)-position, and as z - t  00 the distance between r a n d  the rotational axis grows 
out of bound monotonically. 

Branch I1 of the functions {F, C, H) is shown in figure 8. The main feature of the 
second branch in comparison with branch I is the creation of two cells. A cell is 
identified as a region that is bounded by z = constant planes on which the axial 
velocity vanishes. In the innermost cell adjacent to the disk the axial velocity is 
negative, i.e. towards the disk. The fluid is thrown outwards near the disk, and return 
flow is made in the upper half of the cell. The fluid rotates in the same direction as 
the disk, but its velocity decreases with z, to vanish at the cell boundary where w = 0. 
In the second cell, encountered as one moves further away from the disk, the axial 
velocity is positive and the circulation in the cell is clockwise when viewed along the 
&axis in the positive direction. The rotation of the fluid here opposes that of the disk. 
In the outermost region the fluid moves towards the disk with a velocity that 
approaches -0.223861 from above as z- t  00, and is being thrown outward in the radial 
direction, its rotational velocity opposing that of the disk once more. The functions 
f(z) and g(z) are displayed in figure 9; the boundary condition at z - t  00 is uniform 
streaming with velocity (0, - ( v o ) t C ,  0). Table 6 lists the numerical values of the 
complete solution at selected breakpoints. The locus of stagnation points u = v = 0 
for branch I1 is shown in figure 10. The projection onto the disk, i.e. the (z, y)-plane, 
is no longer a simple curve: it exhibits a single loop. 

Figure 11 and 12 show the velocity components U and V respectively, at various 
radial positions along the ray 0 = in. Figures 13 and 14 show velocity development 
as the observer moves along the r = 1 circle in the positive &direction. It may be 
seen that superposition of the velocity ( ( vw) tg ( z ) ,  - (vw)kf(z)} does not alter the basic 
cell structure of the flow, but it does change the magnitude and even the direction 
of the swirling motion within the cells. 
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FI'I~URE 22. Dimensionless azimuthal velocity f = Y/&J for 
branch 11; C = 1, Z =  0.1,8 = 0.06, r = 1. 

For s 9 0 we have 
141 - lim - - 0, 

z*mI VI 
and consequently the distance between the axis of rotation and the locus of stagnation 
points goes to zero as z + 00. 

The remaining solutions were obtained under the conditions (15a, b). Figures 15-17 
show isometric plots of the locus r for s = 0.02 and branches I, I1 and 111. We observe 
that the projection of the locus onto the disk is a closed curve consisting of one or 
more loops, the number of loops depending on the branch number. 

Figures 18-20 display various plots of the branch I1 solution a t  s = 0.06. Figure 18 
contains {P, G, H) of the von K k m i n  swirling flow. The Cartesian components 
of the superposed velocity are shown in figure 19. The corresponding stagnation point 
locus is shown in figure 20. These solutions were obtained by continuation in s from 
s = 0. Figures 21 and 22 show the velocity development with 0 on the unit circle. 

5. Conclusions 
We have demonstrated in this paper the existence of a set of hitherto unknown 

solutions to the Navier-Stokes equations. These solutions depend on, and are 
continuous in, a parameter C. As C+O the asymmetric solutions degenerate into the 
axisymmetric solutions of von Khrman. Thus the von Ktirmtin solutions are never 
isolated in the sense that there are asymmetric solutions arbitrarily close by. 

The new asymmetric solutions described in this paper are the results of superposition 
of the von Ktirmhn swirling flows and a pseudoplane flow that exhibits uniform 
velocity in planes parallel to the disk. The Cartesian components of this velocity 
{(vw)tg(z) ,  - ( vw) f f ( z ) }  are defined by two coupled linear equations, the coefficients 
of which depend on the solution of the von KarmBn swirling flow. A subset of the 
solutions obtained here corresponds to flow induced by the rotation of a disk when 
the latter is placed in a fluid that is moving with a constant uniform velocity. 
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